Forms of analyte in liquid, gaseous and solid samples and equilibrium between them

Question

- What states of matter do you know?
- What sample types do you know?

Sample types

- Gaseous
- Liquid
- Solid
- Mixed
-What are the differences between gas and liquid?

Mixed samples

- Gas in liquid (oxygen in water)
- Gas in solid (hydrogen sulfide in sulfur)
- Liquid in solid (water in soil)
- Solid in liquid (particulates in water)
- Solid in gas (dust in air)

Forms of analytes

- Molecular
- Atomic
- Ionic (different oxidation state)
- Radical
- Coordination complex

Forms of analytes

- Molecular
- Atomic
- Ionic (different oxidation state)
- Radical
- Coordination complex

Key forms of analytes

Liquid sample

Solid sample

Molecular
Ionic
Associate
Complex

Gaseous sample

Molecular
Radical lonic

Importance

- Analyst should understand what is in a sample
- Without understanding, results can be confusing
- Different forms of analyte have different properties

Examples

- Molecular forms of analyte are more volatile
- Ionic forms have greater water solubility
- $\mathrm{Cr}(\mathrm{VI})$ is much more toxic than Cr (III)
- Free forms of chemicals in soil are more toxic than bound
- Radicals are more reactive than molecules

Types of analytical methods

- Total concentration of element (all forms)
- Total concentration of a molecule (or corresponding ion)
- Concentration of molecule or ion
- Free (or water soluble) form of molecule/ion
- Concentration of a bound form (e.g., by particles)

Examples

- Water soluble forms of heavy metals in soil
- Total concentration of sorbic acid (or sorbates) in juices
- Concentration of PAHs bound to solid particles
- Concentrations of chloride ions in water
- Concentration of $\mathrm{Cr}(\mathrm{VI})$ in drinking water

Question

- What will we have in a 1% water solution of NaCl ?
- Answer: ions of Na^{+}and Cl^{-}
- NaCl is not present
- Molecules of NaCl are also not present in crystal NaCl

NaCl crystal structure

Equilibrium

$$
A+B \leftrightarrow C+D
$$

- How to shift equilibrium to the left?
- Almost no reaction has 100% degree
- Everything in the environment is at the equilibrium

How do you understand equilibrium?

- Concentrations of reagents do not change
- Rates of forward and reverse reactions are equal (=)

Life example

Capital does not change with time
(at equilibrium)

Heterogeneous equilibrium

Equilibrium
Rate of evaporation
$=$
Rate of condensation

Acid-base equilibrium

For acids:
$\mathrm{HA} \leftrightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$

For bases:

$$
\mathrm{BOH} \leftrightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

Acids and bases

$\mathrm{HA} \leftrightarrow \mathrm{H}^{+}+\mathrm{A}$

$\mathrm{A}+\mathrm{OH}^{-} \longleftrightarrow \mathrm{AOH}$

$$
\mathrm{BOH} \leftrightarrow \mathrm{~B}^{+}+\mathrm{OH}^{-}
$$

$+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{BH}^{+}+\mathrm{OH}^{-}$

Equilibrium constant (K)

- General form:

$$
K=k \frac{[A]_{1}}{[A]_{2}}
$$

- $[\mathrm{A}]_{1}$ - equilibrium analyte concentration in form 1
- $[\mathrm{A}]_{2}$ - equilibrium analyte concentration in form 2
- k - coefficient depending on concentrations of other compounds

Chemical equilibrium constant

$$
K=\frac{\text { Concentrations of products }}{\text { Concentrations of reagents }}
$$

Acidity constant

- For the reaction
$\mathrm{HAc} \leftrightarrow \mathrm{H}^{+}+\mathrm{Ac}^{-}$

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[A c^{-}\right]\left[H^{+}\right]}{[H A c]}
$$

Basicity constant

- For the reaction:
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$

$$
\mathrm{K}_{\mathrm{b}}=\frac{\left[N H_{4}^{+}\right]\left[O H^{-}\right]}{\left[N H_{3}\right]}
$$

- https://www.youtube.com/watch?v=I5fk7HPmo5g

Question

- What will be present in a solution of acetic acid in water.

$$
\begin{gathered}
\mathrm{HAc} \leftrightarrow \mathrm{H}^{+}+\mathrm{Ac}^{-} \\
\mathrm{HAc}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Ac}^{-}
\end{gathered}
$$

- What will be concentrations of HAc and Ac- if 0.15 g of pure (100\%) HAc was dissolved in 250 mL of water (C $=0.1 \mathrm{~mol} / \mathrm{L}$)

Solution

$$
\mathrm{K}_{\mathrm{a}}=\frac{\left[A c^{-}\right]\left[H^{+}\right]}{[H A c]}=1.75 \times 10^{-5}
$$

- Concentrations of all species ($\mathrm{Ac}^{-}, \mathrm{H}^{+}, \mathrm{HAc}$) are unknown
- We only know initial concentration (C_{0}) of HAc, which should decrease due to a partial dissociation
- $\left[\mathrm{Ac}^{-}\right]=\left[\mathrm{H}^{+}\right]$because dissociation of 1 HAc molecule leads to a formation of one Ac^{-}ion and one H^{+}ion

Solution (continued)

- If one Ac^{-}ion was formed, number of HAc molecules decreased by one
- $\mathrm{C}_{0}=[\mathrm{HAc}]+\left[\mathrm{Ac}^{-}\right]$
- Let's express [Ac-] as x

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=\frac{x \times x}{C_{0}-x}=1.75 \times 10^{-5} \\
& \mathrm{x}^{2}+1.75 \cdot 10^{-5} \mathrm{x}-1.75 \cdot 10^{-6}=0
\end{aligned}
$$

Solution (continued)

- $D=b^{2}-4 a c=3.06 \cdot 10^{-10}+4 \cdot 1.75 \cdot 10^{-6}=7 \cdot 10^{-6}$

$$
x_{1}=\frac{-b+\sqrt{D}}{2 a}=\frac{1.75 \times 10^{-5}+0.002646}{2}=0.00133
$$

- $\left[\mathrm{Ac}^{-}\right]=0.00133 \mathrm{~mol} / \mathrm{L}$
- $\left[\mathrm{H}^{+}\right]=0.00133 \mathrm{~mol} / \mathrm{L}$
- $[\mathrm{HAc}]=0.1-0.00133=0.0987 \mathrm{~mol} / \mathrm{L}$

Question

- What will be present in a solution of sodium acetate in water.

$$
\mathrm{Na}^{+}+\mathrm{Ac}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{Na}^{+}+\mathrm{HAc}+\mathrm{OH}^{-}
$$

$$
\mathrm{Ac}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HAc}+\mathrm{OH}^{-}
$$

- What will be concentrations of the ions?

Task

- Water sample $(\mathrm{V}=100 \mathrm{~mL})$ containing benzene at $\mathrm{C}=$ $10 \mu \mathrm{~g} / \mathrm{L}$ was extracted by 10 mL hexane.
- What are equilibrium concentrations of benzene in water and hexane if distribution constant between hexane and water is 100 ?

